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are based on the implicative quasi-Boolean algebra with operator (IqBaO) [10]. Their 
independence is established by several examples. Logics corresponding to these algebras 
are presented. Two new pairs of lower-upper approximations of a set have been introduced 
in order to develop the notion of duality with respect to the quasi-complementation. Set 
theoretic rough set models of some of the algebras are constructed using these lower-upper 
approximations and quasi-complementation.
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1. Introduction

Quasi-Boolean algebra [8] arises naturally as the algebra of rough sets [1,6]. A quasi-Boolean algebra (qBa) is a structure 
as defined below. The algebra 〈S, ∨, ∧, ¬, 0, 1〉 is a qBa if and only if

1. 〈S, ∨, ∧, 0, 1〉 is a bounded distributive lattice
2. ¬¬x = x, for all x in S
3. ¬(x ∨ y) = ¬x ∧ ¬y, for all x, y in S .

It is to be noted that a qBa may not be a Boolean algebra as x ∧ ¬x �= 0 and hence x ∨ ¬x �= 1. Example 2.5 given in the 
sequel is not a Boolean algebra but a quasi-Boolean algebra.

In this paper, we need the definition of abstract pre-rough algebra [2] which is based on qBa. A pre-rough algebra is a 
structure 〈S, ∨, ∧, ¬, O , 0, 1〉, where O is a unary operation on S with the following conditions:

1. 〈S, ∨, ∧, ¬, 0, 1〉 is a qBa.
2. O 1 = 1.
3. O (x ∧ y) = O x ∧ O y, for all x, y ∈ S .
4. O x ≤ x, for all x ∈ S where ≤ is the lattice order.
5. O O x = O x, for all x ∈ S .
6. M O x = O x, for all x ∈ S , where Mx = ¬O¬x.
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7. ¬O x ∨ O x = 1, for all x ∈ S .
8. O (x ∨ y) = O x ∨ O y, for all x, y ∈ S .
9. Mx ≤ M y and O x ≤ O y imply x ≤ y, for all x, y ∈ S .

In the same paper [2], an algebra called topological quasi-Boolean algebra is defined satisfying the conditions from 1 to 
6.

In [9], the definition of pre-rough algebra has further been simplified. The authors of [9] divide the original definition 
of topological quasi-Boolean algebra into two notions namely topological quasi-Boolean algebra (tqBa) satisfying conditions 
1 − 5 and topological quasi-Boolean algebra 5 (tqBa5) satisfying conditions 1 − 6 stated above. It was established in [4] that 
in qBa (even in tqBa5) an implication operator → satisfying the property:

x ≤ y if and only if x → y = 1 (P→)

can not be defined in terms of other operations present in qBa (even in tqBa5) (See Example 2.36). However, in pre-rough 
algebra such an operator can be defined by:

x → y ≡ (¬O x ∨ O y) ∧ (¬Mx ∨ M y).

It was observed afterwards [9] that in some algebras weaker than pre-rough algebra and stronger than qBa, the above im-
plication operator is available. However, in [10] the implication operator has been imposed in qBa and some other stronger 
structures where this operator is not available in general. Following Rasiowa [8] these structures have been named implica-
tive quasi-Boolean algebra (IqBa) and implicative quasi-Boolean algebra with operation (IqBaO). The operations they [10]
have taken are topological operators corresponding to the modal axioms T, S4 and S5 [5]. The corresponding algebras have 
been named as implicative quasi-Boolean algebra with modal axiom T(IqBaT), implicative quasi-Boolean algebra with modal 
axiom S4(IqBa4) and implicative quasi-Boolean algebra with modal axiom S5(IqBa5).

It is to be noted that in the passage from tqBa to pre-rough algebra, three intermediate properties viz. ¬O x ∨ O x = 1, for 
all x (IP1), O (x ∨ y) = O x ∨ O y, for all x, y (IP2) and Mx ≤ M y and O x ≤ O y imply x ≤ y, for all x, y (IP3) together play 
a crucial role. They are not independent in the sense that tqBa + IP1 + IP3 implies IP2 [13,9]. Three intermediate algebras 
using these properties are defined in [10]: by adding IP1, 1P2 and IP3 separately to tqBa5. These are named as intermediate 
algebra of type 1 (IA1), intermediate algebra of type 2 (IA2) and intermediate algebra of type 3 (IA3) respectively.

We are now interested in adding IP1, IP2 and IP3 separately to IqBaO, IqBaT, IqBa4 and IqBa5 and investigate the con-
sequences. For a clear understanding of the various algebraic structures obtained thus, we refer to Fig. 1 on page 3. Of 
these, the chain of algebras qBa, IqBa, IqBaO, IqBaT, IqBa4 and IqBa5 are included in [10]. In fact, we have actually added 
the modal axiom T to IqBa1 to obtain IqBa1,T which is the same as adding IP1 to IqBaT. Similar is the case for all other 
structures.

In addition, rough set models of some of the algebras have been presented in Section 4. A detailed discussion on rough 
set models is available in this section.

Section wise details of this paper are as follows.
In Section 2, a bunch of implicative topological algebras based on IqBaO is defined and their independence is established 

with the help of several examples. Section 3 deals with Hilbert type axiomatic systems for these algebraic structures. In 
Section 4, two new types of lower/upper approximations of a set have been defined which are dual approximations with 
respect to the quasi-complementation. Set theoretic rough set models of some of the algebras have been presented with the 
help of these lower-upper approximations and quasi-complementation. Section 5 contains some concluding remarks.

2. Implicative topological algebras and their independence

Quasi-Boolean algebra has been defined in the introduction. Proposition 2.1 below gives some of its properties. As stated 
in the introduction, the algebraic structures that will be discussed in this paper are shown in Fig. 1.

Proposition 2.1. [8] The following properties hold in a quasi-Boolean algebra 〈S, ∨, ∧, ¬, 0, 1〉.

• ¬1 = 0 and ¬0 = 1.
• ¬(x ∧ y) = ¬x ∨ ¬y, for all x, y ∈ S.
• x ≤ y if and only if ¬y ≤ ¬x, for all x, y ∈ S, where the lattice order ≤ is defined as x ≤ y if and only if x ∨ y = y (x ∧ y = x).

Definition 2.2. [10] An abstract algebra 〈S, ∨, ∧, →, ¬, 0, 1〉 is called an implicative quasi-Boolean algebra (IqBa) if and only 
if

1. 〈S, ∨, ∧, ¬, 0, 1〉 is a qBa.
2. x → y = 1 if and only if x ≤ y, for all x, y ∈ S . (P→)
2
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Fig. 1. Algebras based on IqBaO. 
P ⇒ Q stands for the algebra Q has one more operation than the algebra P . P −→ Q stands for both the algebras P and Q have the same operations but 
Q has one more axiom than P .

Definition 2.3. [10] An algebra 〈S, ∨, ∧, →, ¬, O , 0, 1〉, where O is a unary operator, will be called an implicative quasi-
Boolean algebra with operator (IqBaO) if and only if

1. 〈S, ∨, ∧, →, ¬, 0, 1〉 is a IqBa.
2. O 1 = 1.
3. O (x ∧ y) = O x ∧ O y, for all x, y ∈ S .

Definition 2.4. [10] Let 〈S, ∨, ∧, →, ¬, O , 0, 1〉 be a IqBaO. Then it will be an

1. implicative quasi-Boolean algebra with modal axiom T (IqBaT) if and only if O x ≤ x holds, for all x ∈ S (modal axiom 
T),

2. implicative quasi-Boolean algebra with modal axiom S4 (IqBa4) if and only if it is a IqBaT and O x ≤ O O x, for all x ∈ S
(modal axiom S4),

3. implicative quasi-Boolean algebra with modal axiom S5 (IqBa5) if and only if it is a IqBa4 and M O x ≤ O x, for all x ∈ S , 
where M ≡ ¬O¬ (modal axiom S5).
3
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Fig. 2. Hasse diagram (IqBaO,IqBa2,IqBa4,IqBa5,IqBaT,IqBa3,T,IqBa3,4).
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Fig. 3. Hasse diagram (IqBa1,IqBa3,IqBa1,4,IqBa1,5,IqBa3,5,tqBa5).

2.1. Algebras IqBa1, IqBaT, IqBa2, IqBa3 and their independence

It has been mentioned in the introduction that three intermediate properties IP1, IP2 and IP3 together play a crucial role. 
They are not independent as shown in [13,9] in the context of pre-rough algebra. We now add them to IqBaO separately 
and investigate the consequences. Before going to that we give an example of IqBaO where IP1, IP2 and IP3 do not hold.

Example 2.5. A lattice whose Hasse diagram is shown in Fig. 2 and →, ¬, O are defined below as

→ 0 x y u v 1
0 1 1 1 1 1 1
x 0 1 1 1 1 1
y y 0 1 u 1 1
u 0 0 0 1 1 1
v 0 0 0 0 1 1
1 0 0 0 0 0 1

0 x y u v 1
¬ 1 v y u x 0
O x x u y 1 1

Clearly, it is a IqBaO. As ¬O x ∨ O x = v �= 1, IP1 does not hold. Again, O (y ∨ u) = 1 �= O y ∨ O u = v , IP2 does also not 
hold. Here, O 1 ≤ O v and M1 ≤ M v but 1 � v and therefore IP3 does not hold.

Remark 2.6. T, S4 and S5 do also not hold in this example as O 0 � 0, O y = u � O O y = y, M O y = y � O y = u.

Definition 2.7. Let 〈S, ∨, ∧, →, ¬, O , 0, 1〉 be a IqBaO. Then it is said to be an

1. implicative quasi-Boolean algebra with IP1 (IqBa1) if and only if ¬O x ∨ O x = 1 holds, for all x ∈ S ,
2. implicative quasi-Boolean algebra with IP2 (IqBa2) if and only if O (x ∨ y) = O x ∨ O y holds, for all x, y ∈ S ,
3. implicative quasi-Boolean algebra with IP3 (IqBa3) if and only if Mx ≤ M y and O x ≤ O y imply x ≤ y, for all x, y ∈ S .

The following example shows that a IqBa1 is neither a IqBa2 nor a IqBa3 nor a IqBaT.

Example 2.8. A lattice whose Hasse diagram is shown in Fig. 3 and →, ¬, O are defined below as

→ 0 x y 1
0 1 1 1 1
x x 1 x 1
y x 0 1 1
1 0 0 0 1

0 x y 1
¬ 1 y x 0
O 0 y 0 1
4
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Clearly, it is a IqBa1. As O (x ∨ y) = 1 �= O x ∨ O y = y, IP2 does not hold. IP3 and T do not hold as O y ≤ O x and M y ≤ Mx
but y � x and O x � x.

Remark 2.9. S4 and S5 do not hold in this example as O x = y � O O x = 0, M O x = x � O x = y.

The following example shows that a IqBa2 is neither a IqBa1 nor a IqBa3 nor a IqBaT.

Example 2.10. A lattice whose Hasse diagram is shown in Fig. 2 and →, ¬, O are defined below as

→ 0 x y u v 1
0 1 1 1 1 1 1
x 0 1 1 1 1 1
y 0 0 1 0 1 1
u 0 0 0 1 1 1
v 0 0 0 0 1 1
1 0 0 0 0 0 1

0 x y u v 1
¬ 1 v u y x 0
O x x x y y 1

Clearly, it is a IqBa2. As ¬O x ∨ O x = v �= 1, IP1 does not hold. IP3 and T do not hold here as O y ≤ O x and M y ≤ Mx but 
y � x and O 0 = x � 0.

Remark 2.11. S4 and S5 do not hold in this example as O v = y � O O v = x, M O v = u � O v = y.

The following example shows that a IqBa3 is neither a IqBa1 nor a IqBa2 nor a IqBaT.

Example 2.12. A lattice is considered whose Hasse diagram is shown in Fig. 3 and →, ¬, O are defined below as

→ 0 x y 1
0 1 1 1 1
x x 1 x 1
y 0 0 1 1
1 0 0 0 1

0 x y 1
¬ 1 x y 0
O 0 y 0 1

It is a IqBa3. IP1, IP2 and T do not hold as ¬O x ∨ O x = y �= 1, O (x ∨ y) = 1 �= O x ∨ O y = y, O x = y � x.

Remark 2.13. S4 and S5 do not hold in the above example as O x = y � O O x = 0, M O x = 1 � O x = y.

The following example is considered for an evidence of a IqBaT which is neither a IqBa1 nor a IqBa2 nor a IqBa3.

Example 2.14. A lattice whose Hasse diagram follows Fig. 2 and →, ¬, O are defined below as

→ 0 x y u v 1
0 1 1 1 1 1 1
x 0 1 1 1 1 1
y 0 x 1 0 1 1
u 0 0 0 1 1 1
v 0 v 0 0 1 1
1 0 0 0 0 0 1

0 x y u v 1
¬ 1 v y u x 0
O 0 x x x y 1

Clearly, it is a IqBaT. IP1, IP2 and IP3 do not hold as ¬O x ∨ O x = v �= 1, O (y ∨ u) = y �= O y ∨ O u = x, O y ≤ O u and 
M y ≤ Mu but y � u.

Remark 2.15. S4 and S5 do not hold in this example as O v = y � O O v = x, M O x = y � O x = x.

The above examples establish the independence of the algebras IqBaI, IqBa2, IqBa3 and IqBaT.

2.2. Algebras IqBa1,T, IqBa4, IqBa2,T, IqBa3,T and their independence

We now add the modal axiom T to each of the algebras IqBaI, IqBa2 and IqBa3.

Definition 2.16. Let 〈S, ∨, ∧, →, ¬, O , 0, 1〉 be a IqBaO. Then it is said to be an
5
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Fig. 4. Hasse diagram (IqBa1,T).

1. implicative quasi-Boolean algebra with IP1 and modal axiom T(IqBa1,T) if and only if it is a IqBa1 and O x ≤ x, for all 
x ∈ S ,

2. implicative quasi-Boolean algebra with IP2 and modal axiom T (IqBa2,T) if and only if it is a IqBa2 and O x ≤ x, for all 
x ∈ S ,

3. implicative quasi-Boolean algebra with IP3 and modal axiom T (IqBa3,T) if and only if it is a IqBa3 and O x ≤ x, for all 
x ∈ S .

Example 2.8, Example 2.10 and Example 2.12 show that a IqBa1, a IqBa2, and a IqBa3 are not necessarily equal to a 
IqBa1,T, a IqBa2,T, and a IqBa3,T respectively.

The following example is considered to show that a IqBa1,T may not be a IqBa2,T, a IqBa3,T and a IqBa4.

Example 2.17. A lattice whose Hasse diagram is shown in Fig. 4 and →, ¬, O are defined below as

→ 0 x y u v 1
0 1 1 1 1 1 1
x 0 1 0 1 0 1
y 0 0 1 1 1 1
u 0 0 0 1 u 1
v 0 0 0 0 1 1
1 0 0 0 0 0 1

0 x y u v 1
¬ 1 v u y x 0
O 0 0 0 x 0 1

Obviously, it is a IqBa1,T but not a IqBa2,T or a IqBa3,T or a IqBa4 as O (x ∨ y) = x �= O x ∨ O y = 0, O v ≤ O u and M v ≤ Mu
but v � u, and O u = x � O O u = 0.

Remark 2.18. S5 is also not available in Example 2.17 as M O u = 1 � O u = x.

The following example shows that a IqBa2,T may not be a IqBa1,T, a IqBa3,T and a IqBa4.

Example 2.19. A lattice whose Hasse diagram is shown in Fig. 5 and →, ¬, O are defined below as

→ 0 x y u v 1
0 1 1 1 1 1 1
x x 1 1 1 1 1
y 0 0 1 1 1 1
u 0 0 0 1 1 1
v 0 v 0 0 1 1
1 0 0 0 0 0 1

0 x y u v 1
¬ 1 v u y x 0
O 0 0 x x y 1

Clearly, it is a IqBa2,T but neither a IqBa1,T nor a IqBa3,T nor a IqBa4 as ¬O y ∨ O y = v �= 1, O u ≤ O y and Mu ≤ M y but 
u � y and O y = x � O O y = 0.

Remark 2.20. S5 is also not available in Example 2.19 as M O y = u � O y = x.
6
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Fig. 5. Hasse diagram (IqBa2,T,IqBa2,5).

The following example is considered to show that a IqBa3,T is neither a IqBa1,T nor a IqBa2,T nor a IqBa4.

Example 2.21. A lattice whose Hasse diagram is shown in Fig. 2 and →, ¬, O are defined below as

→ 0 x y u v 1
0 1 1 1 1 1 1
x 0 1 1 1 1 1
y 0 x 1 y 1 1
u 0 0 0 1 1 1
v 0 0 0 0 1 1
1 0 0 0 0 0 1

0 x y u v 1
¬ 1 v y u x 0
O 0 0 x 0 y 1

Obviously, it is a IqBa3,T but not a IqBa1,T, a IqBa2,T and a IqBa4 as ¬O y ∨ O y = v �= 1, O (y ∨ u) = y �= O y ∨ O u =
x, O y = x � O O y = 0.

Remark 2.22. S5 does not hold in this example as M O y = y � O y = x.

The following example shows that a IqBa4 is neither a IqBa1,T nor a IqBa2,T nor a IqBa3,T.

Example 2.23. A lattice is considered whose Hasse diagram is shown in Fig. 2 and →, ¬, O are defined below as

→ 0 x y u v 1
0 1 1 1 1 1 1
x 0 1 1 1 1 1
y 0 x 1 0 1 1
u 0 0 0 1 1 1
v 0 0 0 v 1 1
1 0 0 0 0 0 1

0 x y u v 1
¬ 1 v y u x 0
O 0 0 0 0 v 1

Clearly, it is a IqBa4. As ¬O v ∨ O v = v �= 1, IP1 does not hold. IP2 and IP3 do not hold as O (y ∨ u) = v �= O y ∨ O u =
0, O y ≤ O u and M y ≤ Mu but y � u.

Remark 2.24. S5 does not hold in this example as M O v = 1 � O v = v .

We notice from the above examples that the algebras IqBa1,T, IqBa2,T IqBa3,T and IqBa4 are independent.

2.3. Algebras IqBa1,4, IqBa5, IqBa2,4, IqBa3,4 and their independence

Modal axiom S4 will now be added to each of the algebras IqBa1,T, IqBa2,T and IqBa3,T.

Definition 2.25. Let 〈S, ∨, ∧, →, ¬, O , 0, 1〉 be a IqBaO. Then it is said to be an
7
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Fig. 6. Hasse diagram (IqBa2,4).

1. implicative quasi-Boolean algebra with IP1 and modal axiom S4 (IqBa1,4) if and only if it is a IqBa1,T and O x ≤ O O x, 
for all x ∈ S ,

2. implicative quasi-Boolean algebra with IP2 and modal axiom S4 (IqBa2,4) if and only if it is a IqBa2,T and O x ≤ O O x, 
for all x ∈ S ,

3. implicative quasi-Boolean algebra with IP3 and modal axiom S4 (IqBa3,4) if and only if it is a IqBa3,T and O x ≤ O O x, 
for all x ∈ S .

Example 2.17, Example 2.19 and Example 2.21 show that IqBa1,T, IqBa2,T and IqBa3,T are not the same with IqBa1,4, 
IqBa2,4 and IqBa3,4 respectively.

The following example is of a IqBa1,4 but neither a IqBa2,4 nor a IqBa3,4 nor a IqBa5.

Example 2.26. A lattice whose Hasse diagram is shown in Fig. 3 and →, ¬, O are defined below as

→ 0 x y 1
0 1 1 1 1
x 0 1 x 1
y 0 0 1 1
1 0 0 0 1

0 x y 1
¬ 1 y x 0
O 0 x 0 1

It is a IqBa1,4. As M O x = 1 � O x = x, it is not a IqBa5. IP2 and IP3 are not valid here as O (x ∨ y) = 1 �= O x ∨ O y = x and 
O y ≤ O x and M y ≤ Mx but y � x.

The following example is of a IqBa2,4 but neither a IqBa1,4 nor a IqBa3,4 nor a IqBa5.

Example 2.27. A lattice whose Hasse diagram is shown in Fig. 6 and →, ¬, O are defined below as

→ 0 x y 1
0 1 1 1 1
x 0 1 1 1
y x 0 1 1
1 0 0 0 1

0 x y 1
¬ 1 y x 0
O 0 x x 1

It is a IqBa2,4. As M O x = y � O x = x, it is not a IqBa5. IP1 and IP3 are not valid in this example as ¬O x ∨ O x = y �= 1
and O y ≤ O x and M y ≤ Mx but y � x.

The following is an example of a IqBa3,4 which is neither a IqBa1,4 nor a IqBa2,4 nor a IqBa5.

Example 2.28. A lattice whose Hasse diagram is shown in Fig. 2 and →, ¬, O are defined below as

→ 0 x y u v 1
0 1 1 1 1 1 1
x 0 1 1 1 1 1
y 0 x 1 y 1 1
u 0 0 0 1 1 1
v 0 0 0 0 1 1
1 0 0 0 0 0 1

0 x y u v 1
¬ 1 v y u x 0
O 0 0 y 0 v 1

Clearly, it is a IqBa3,4. IP1, IP2 and S5 do not hold here as ¬O y ∨ O y = y �= 1, O (y ∨ u) = v �= O y ∨ O u = y and 
M O v = 1 � O v = v .

The following is an example of a IqBa5 which is neither a IqBa1,4 nor a IqBa2,4 nor a IqBa3,4.
8
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Example 2.29. A lattice whose Hasse diagram follows Fig. 2 and →, ¬, O are defined below as

→ 0 x y u v 1
0 1 1 1 1 1 1
x 0 1 1 1 1 1
y 0 x 1 0 1 1
u 0 0 0 1 1 1
v 0 0 0 v 1 1
1 0 0 0 0 0 1

0 x y u v 1
¬ 1 v y u x 0
O 0 x x x v 1

Clearly, it is a IqBa5. IP1, IP2 and IP3 do not hold here as ¬O x ∨ O x = v �= 1, O (y ∨ u) = v �= O y ∨ O u = x and O y ≤ O u
and M y ≤ Mu but y � u.

By the above examples, the independence of the algebras IqBa1,4, IqBa2,4, IqBa1,4 and IqBa5 is established.

2.4. Algebras IqBa1,5, IqBa2,5, IqBa3,5 and their independence

Similarly, adding the modal axiom S5 to each of the algebras IqBaI,4, IqBa2,4 and IqBa3,4 we observe that new algebras 
so formed are not only independent to each other but not equivalent to previous one.

Definition 2.30. Let 〈S, ∨, ∧, →, ¬, O , 0, 1〉 be a IqBaO. Then it is said to be an

1. implicative quasi-Boolean algebra with IP1 and modal axiom S5 (IqBa1,5) if and only if it is a IqBa1,4 and M O x ≤ O x, 
for all x ∈ S ,

2. implicative quasi-Boolean algebra with IP2 and modal axiom S5 (IqBa2,5) if and only if it is a IqBa2,4 and M O x ≤ O x, 
for all x ∈ S ,

3. implicative quasi-Boolean algebra with IP3 and modal axiom S5 (IqBa3,5) if and only if it is a IqBa3,4 and M O x ≤ O x, 
for all x ∈ S .

Example 2.26, Example 2.27 and Example 2.28 show that IqBa1,4, IqBa2,4 and IqBa3,4 are not the same with IqBa1,5, 
IqBa2,5 and IqBa3,5 respectively.

We now give an example of a IqBa1,5 which is neither a IqBa2,5 nor a IqBa3,5.

Example 2.31. Let us consider a lattice whose Hasse diagram is shown in Fig. 3 and →, ¬, O are defined below as

→ 0 x y 1
0 1 1 1 1
x 0 1 0 1
y 0 0 1 1
1 0 0 0 1

0 x y 1
¬ 1 y x 0
O 0 0 0 1

Clearly, it is a IqBa1,5. IP2 and IP3 are not valid here as O (x ∨ y) = 1 �= O x ∨ O y = 0 and O x ≤ O y and Mx ≤ M y but 
x � y.

The following example shows that a IqBa2,5 may not be a IqBa1,5 and a IqBa3,5.

Example 2.32. A lattice whose Hasse diagram is shown in Fig. 5 and →, ¬, O are defined below as

→ 0 x y u v 1
0 1 1 1 1 1 1
x x 1 1 1 1 1
y 0 0 1 1 1 1
u 0 0 0 1 1 1
v 0 0 v 0 1 1
1 0 0 0 0 0 1

0 x y u v 1
¬ 1 v u y x 0
O 0 x x x v 1

Clearly, it is a IqBa2,5 but neither a IqBa1,5 nor a IqBa3,5 as ¬O x ∨ O x = v �= 1, O u ≤ O y and Mu ≤ M y but u � y.
The following is an example of a IqBa3,5 which is neither a IqBa1,5 nor a IqBa2,5.

Example 2.33. A lattice whose Hasse diagram is shown in Fig. 3 and →, ¬, O are defined below as
9
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Table 1
The algebras presented in Section 2.

Example IP1 IP2 IP3 T S4 S5 Type of algebra

Example 2.5 no no no no no no IqBaO
Example 2.8 yes no no no no no IqBa1
Example 2.10 no yes no no no no IqBa2
Example 2.12 no no yes no no no IqBa3
Example 2.14 no no no yes no no IqBaT
Example 2.17 yes no no yes no no IqBa1,T
Example 2.19 no yes no yes no no IqBa2,T
Example 2.21 no no yes yes no no IqBa3,T
Example 2.23 no no no yes yes no IqBa4
Example 2.26 yes no no yes yes no IqBa1,4
Example 2.27 no yes no yes yes no IqBa2,4
Example 2.28 no no yes yes yes no IqBa3,4
Example 2.29 no no no yes yes yes IqBa5
Example 2.31 yes no no yes yes yes IqBa1,5
Example 2.32 no yes no yes yes yes IqBa2,5
Example 2.33 no no yes yes yes yes IqBa3,5

→ 0 x y 1
0 1 1 1 1
x 0 1 x 1
y 0 0 1 1
1 0 0 0 1

0 x y 1
¬ 1 x y 0
O 0 x 0 1

Clearly, it is a IqBa3,5. IP1 and IP2 are not valid here as ¬O x ∨ O x = x �= 1 and O (x ∨ y) = 1 �= O x ∨ O y = x.

Remark 2.34. The algebraic counterpart of the modal axiom K in the form O (x → y) → (O x → O y) = 1 does not hold in 
the above examples except Example 2.31.

All examples stated above are either a IqBaO or IqBaO with some other additional properties. At a glance, from Table 1, 
one can see immediately which properties IP1, IP2, IP3, T, S4 and S5 hold in the above algebras. Here, ‘yes’ means the 
property holds and ‘no’ means the property does not hold. It is clear from this table that all algebras stated above are 
independent to each other.

Remark 2.35. It has been mentioned in [10] that the axiom O x ≤ O O x is redundant in a IqBa5 and the modal axiom B 
(M O x ≤ x) also holds in a IqBa5. Thus, the modal axiom S4 is redundant in a IqBa1,5, IqBa2,5 and IqBa3,5 and the modal 
axiom B also holds in these algebras. Due to this reason, modal axiom S4 is not considered as an axiom of the logic systems 
corresponding to the algebras IqBa1,5, IqBa2,5 and IqBa3,5 in Section 3.

It has been mentioned in [4] that in a tqBa no implication operator → satisfying the condition (P→) can in general be 
defined in terms of the other operations in it.

Example 2.36. (See [4]) A lattice whose Hasse diagram follows Fig. 3 and ¬, O are defined as

0 x y 1

¬ 1 x y 0

O 0 x y 1

It is a tqBa as well as tqba5. Now x → x must be an element involving x, ¬, O , ∨, ∧ only. But it is observed that 
¬x = x, O x = x, x ∨ x = x, x ∧ x = x and hence x → x = x(�= 1) whereas x ≤ x.

With the above example it was mentioned in [10] that in IA2 and IA3 also no such → exists as it is also an instance of 
IA2 and IA3.

Remark 2.37. Whether such → exists or not in IA1 is unsolved.

Remark 2.38. As, in general, there is no such → defined in terms of other operations in tqBa, tqBa5, IA2 and IA3, in order 
to develop the Hilbert type axiomatic systems for the logics corresponding to these algebras one may impose → in these 
algebras in a general way satisfying the property (P→). Then, a topological quasi-Boolean algebra with →, i.e., a tqBa with 
x → y = 1 if and only if x ≤ y, for all x, y is identical with a IqBa4. Similarly, a topological quasi-Boolean algebra 5 with →, 
10



M.R. Sardar and M.K. Chakraborty International Journal of Approximate Reasoning 148 (2022) 1–22
Intermediate algebra of type 2 with → and Intermediate algebra of type 3 with → are identical with a IqBa5, IqBa2,5 and 
IqBa3,5 respectively.

It has been mentioned in the introduction that in [10], the authors introduced the notion of an implicative quasi-Boolean 
algebra (IqBa) following Rasiowa as, in general, no → was available in a qBa satisfying the property (P→). Later, they added 
modal axioms T, S4 and S5 to obtain more structures. Following the same method we have added IP1, IP2 and IP3 separately 
to a IqBa in addition to these modal axioms T, S4 and S5 as, in general, no → was available satisfying the property (P→)
in IA2, IA3 and in case IA1, it is unsolved till now. As a result, we have developed twelve structures in addition to the 
structures that are presented in [10]. Thus, this work may be considered as supplementary to [10].

3. The Hilbert-type axiomatic systems

We now present the Hilbert style systems corresponding to the algebras IqBa1, IqBa2, IqBa3, IqBa1,T, IqBa2,T, IqBa3,T, 
IqBa1,4, IqBa2,4, IqBa3,4, IqBa1,5, IqBa2,5 and IqBa3,5. For this, we follow the standard construction of a Lindenbaum-Tarski 
algebra for a given logic.

Lindenbaum-Tarski construction Let F be the set of all well formed formulae of a propositional logic that has a logical 
connective ⇒. A relation � on F is defined by γ � δ if and only if γ ⇒ δ and δ ⇒ γ are theorems where γ and δ are 
well formed formulae. Using the axioms and rules of the given logic it is proved that � is an equivalence relation on F . 
The quotient set F/ � is then considered and a partial order relation ≤ is defined on it as [γ ] ≤ [δ] if and only if γ ⇒ δ

is a theorem. It is shown that the equivalence relation � on F is a congruence with respect to all logical connectives. The 
resulting algebra with the universe F/ � is called a Lindenbaum-Tarski algebra.

In [10], the Hilbert Systems L, L O , LT , L4, L5 corresponding to the algebras IqBa, IqBaO, IqBaT, IqBa4 and IqBa5 have been 
presented.

We call the logic systems for the algebras IqBa1, IqBa2, IqBa3, IqBa1,T, IqBa2,T, IqBa3,T, IqBa1,4, IqBa2,4, IqBa3,4, IqBa1,5, 
IqBa2,5 and IqBa3,5 as L1, L2, L3, L1,T , L2,T , L3,T , L1,4, L2,4, L3,4, L1,5, L2,5, L3,5 respectively.

3.1. Hilbert systems L1, L1,T , L1,4, L1,5

The alphabets of the language of all the systems L1, L1,T , L1,4, L1,5 consist of

- propositional variables r, s, t,. . .
- two unary logical connectives � and I .
- two binary logical connectives ∧ and ⇒.
- parentheses ( , ).

All well formed formulas (wffs) are formed as usual way and we denote them as α, β, γ , δ etc.
Two definable logical connectives ∨ (binary) and C (unary) are defined as γ ∨ δ ≡� (� γ∧ � δ), Cγ ≡� I � δ.
Axioms for L1:

1. γ ⇒�� γ
2. �� γ ⇒ γ
3. γ ∧ δ ⇒ δ

4. γ ∧ δ ⇒ δ ∧ γ
5. γ ∧ (δ ∨ β) ⇒ (γ ∧ δ) ∨ (γ ∧ β)

6. (γ ∧ δ) ∨ (γ ∧ β) ⇒ γ ∧ (δ ∨ β)

7. Iγ ∧ Iδ ⇒ I(γ ∧ δ)

8. � Iγ ∨ Iγ

Axioms for L1,T : All axioms of L1 along with one additional axiom (T): Iγ ⇒ γ .
Axioms for L1,4: All axioms of L1,T along with one additional axiom (S4): Iγ ⇒ I Iγ .
Axioms for L1,5: All axioms of L1,T along with one additional axiom (S5): C Iγ ⇒ Iγ .
The Rules of inference for L1, L1,T , L1,4, L1,5 are the same as prescribed below.

1.
γ ,γ ⇒ δ

δ
Modus ponens (MP)

2.
γ ⇒ δ, δ ⇒ β

γ ⇒ β
Hypothetical syllogism (HS)

3.
δ

γ ⇒ δ

4.
γ ⇒ δ
� δ ⇒� γ

11
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5.
γ ⇒ δ,γ ⇒ β

γ ⇒ δ ∧ β

6.
γ ⇒ δ, δ ⇒ γ ,α ⇒ β,β ⇒ α

(γ ⇒ α) ⇒ (δ ⇒ β)

7.
γ ⇒ δ

Iγ ⇒ Iδ

8.
γ

Iγ
Necessitation (N)

Definition 3.1. A model of L1/L1,T /L1,4/L1,5 is 〈S, V 〉 where S = 〈S, ∨, ∧, →, ¬, O , 0, 1〉 is a IqBa1/IqBa1,T/IqBa1,4/IqBa1,5 
and V is a valuation function which assigns a value V (r) ∈ S for each atomic wff r of L1/L1,T /L1,4/L1,5.

Remark 3.2. Any valuation function V can be extended to arbitrary formulae as follows

V (γ ∧ δ) = V (γ ) ∧ V (δ), V (� γ ) = ¬V (γ ), V (γ ⇒ δ) = V (γ ) → V (δ), V (Iγ ) = O V (γ ).

As ∨ and C are definable connectives, it can be shown that V (γ ∨ δ) = V (γ ) ∨ V (δ), V (Cγ ) = M V (γ ) where Mx =
¬O¬x.

Definition 3.3. A wff γ is said to be true in a model 〈S, V 〉 of L1/L1,T /L1,4 /L1,5 if and only if V (γ ) = 1.

Definition 3.4. A wff γ is said to be valid in the class of all models of L1/L1,T /L1,4/L1,5 if and only if γ is true in every 
model 〈S, V 〉 of L1/L1,T /L1,4 /L1,5.

Remark 3.5. A wff γ ⇒ δ is valid if and only if V (γ ) ≤ V (δ), for all models 〈S, V 〉 of L1/L1,T /L1,4/L1,5.

Note 3.6. 
 γ stand for γ is a theorem in the logic system L1/L1,T /L1,4/L1,5 as usual sense.

Theorem 3.7. (Soundness): If 
 γ in the logic system L1/L1,T /L1,4/L1,5 then γ is valid in the class of all models of L1/L1,T /L1,4/L1,5 .

Proof. (Outline) All axioms and rules of inference in the logic system L1/L1,T /L1,4/L1,5 are valid. Using induction on the 
length of the proof of γ it can be established that γ is valid. �
Theorem 3.8. (Completeness): If γ is valid in the class of all models of L1/L1,T /L1,4/L1,5 then 
 γ in the logic system L1/L1,T /L1,4/

L1,5 .

Proof. (Outline) Here, we consider the logic system L1,5 to prove the result. Proofs of other systems are similar. The 
Lindenbaum- Tarski algebra for the logic system L1,5 with connectives ∧, ∨, �, ⇒, I, C is 〈F/ �, ∨, ∧, ¬, →, O , M〉, where 
the operations ∨, ∧, ¬, →, O , M are defined by the congruence relation �, i.e., [γ ] ∨[δ] = [γ ∨δ], [γ ] ∧[δ] = [γ ∧δ], ¬[γ ] =
[� γ ], [γ ] → [δ] = [γ ⇒ δ], O [γ ] = [Iγ ], M[γ ] = [Cγ ]. The partial order relation ≤, [γ ] ≤ [δ] if and only if 
 γ ⇒ δ, yields 
〈F/ �, ≤, ∨, ∧, ¬, →, O , M, 0, 1〉 as a IqBa1,5 where 0 = [γ ], 1 = [δ] such that 
� γ , 
 δ. Now, we consider the valuation 
V such that V (r) = [r], for all atomic wff r ∈ F . It can be extended over F as V (γ ) = [γ ], for all γ ∈ F . Then, 〈S, V 〉 is a 
model of L1,5 where S = 〈F/ �, ≤, ∨, ∧, ¬, →, O , M, 0, 1〉. As γ is valid in the class of all models of L1,5, so it is true in 
the model 〈S, V 〉 and consequently V (γ ) = 1 i.e., 
 γ in the logic system L1,5. �
3.2. Hilbert systems L2, L2,T , L2,4, L2,5

The alphabets of the language of all the systems L2, L2,T , L2,4, L2,5 are the same as that of L1.
Axioms for L2: All axioms of L1 except that 8 is replaced by l(γ ∨ δ) ⇒ Iγ ∨ Iδ.
Axioms for L2,T : All axioms of L2 along with one additional axiom (T): Iγ ⇒ γ .
Axioms for L2,4: All axioms of L2,T along with one additional axiom (S4): Iγ ⇒ I Iγ .
Axioms for L2,5: All axioms of L2,T along with one additional axiom (S5): C Iγ ⇒ Iγ .
The Rules of inference for L2, L2,T , L2,4, L2,5 are the same as that of L1.

Theorem 3.9. With respect to the corresponding algebras the above Hilbert Systems mentioned in Subsection 3.2 are sound and com-
plete.

Proof. All proofs are obtainable following Theorem 3.7 and Theorem 3.8. �
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3.3. Hilbert systems L3, L3,T , L3,4, L3,5

The alphabets of the language of all the systems L3, L3,T , L3,4, L3,5 are the same as that of L1.
Axioms for L3: All axioms of L1 except the axiom 8.
Axioms for L3,T : All axioms of L3 along with one additional axiom (T): Iγ ⇒ γ .
Axioms for L3,4: All axioms of L3,T along with one additional axiom (S4): Iγ ⇒ I Iγ .
Axioms for L3,5: All axioms of L3,T along with one additional axiom (S5): C Iγ ⇒ Iγ .

The Rules of inference for L3, L3,T , L3,4, L3,5 are all rules of L1 along with one additional rule 
Iγ ⇒ Iδ, Cγ ⇒ Cδ

γ ⇒ δ
.

Theorem 3.10. With respect to the class of corresponding algebras the above Hilbert Systems mentioned in Subsection 3.3 are sound 
and complete.

Proof. All proofs are obtainable following Theorem 3.7 and Theorem 3.8. �
4. Rough set models of some algebras with respect to the quasi-complementation

The notion of quasi − complementation and quasi − f ield of subsets of a set X has been discussed in [8]. In a non 
empty set X , the quasi − complementation ¬ is defined by ¬A = X − g(A) = g(A)c , for each A ⊆ X where g : X → X is an 
involution, i.e., g(g(a)) = a, for all a ∈ X . It is obvious that every involution g is a bijective mapping on X . Moreover, for any 
involution g : X → X the following results hold.

• g(g(A)) = A, for all A ⊆ X .
• g(A ∪ B) = g(A) ∪ g(B), for all A, B ⊆ X .
• g(A ∩ B) = g(A) ∩ g(B), for all A, B ⊆ X .
• ¬A = g(A)c = g(Ac), for all A ⊆ X .
• ¬¬A = A, for all A ⊆ X .
• ¬(A ∩ B) = ¬A ∪ ¬B , for all A, B ⊆ X .
• ¬(A ∪ B) = ¬A ∩ ¬B , for all A, B ⊆ X .

A collection Q F (X) of subsets of X , containing X and closed under set-theoretical union, intersection as well quasi-
complementation ¬, 〈Q F (X), ∪, ∩, ¬, ∅, X〉 is called a quasi − f ield of subsets of X . It has also been shown in [8] that 
quasi-fields of sets are typical examples of qBa, in the sense that every qBa is isomorphic to a quasi-field of sets.

For a non empty set X , thus, 〈P (X), ∪, ∩, ¬, ∅, X〉 becomes a qBa, where P (X) is the power set of X and ¬A = g(A)c (g
is an involution on X). It is to be noted that for an arbitrary involution g on X , 〈P (X), ∪, ∩, ¬, ∅, X〉 may not be a Boolean 
algebra as the quasi-complementation and complementation (set-theoretical) of a subset A of X are different in general, i.e., 
¬A(= g(A)c) �= Ac (see Example 4.11).

There are several definitions of Rough Sets of Pawlak [7,3]. Of these the most popular one is the lower-upper approxi-
mations pair definition. Given an approximation space (X, R), where X is a non empty set and R is an equivalence relation 
on it, a rough set is the pair 〈A, A〉 for A ⊆ X . A = {x ∈ X : [x]R ⊆ A} and A = {x ∈ X : [x]R ∩ A �= ∅}; these sets are called 
the lower and upper approximations of the subset A of X relative to the approximation space. Rough set theory has been 
further generalised by an arbitrary relation in lieu of an equivalence relation [15,14,12] and by covering of a set [11,12]. 
For an arbitrary relation R on a non empty set X , it is known that the lower-upper approximations A R = {x ∈ X : Rx ⊆ A}
and A

R = {x ∈ X : Rx ∩ A �= ∅}, where Rx = {y ∈ X : xR y}, are dual to each other with respect to the complementation, i.e., 
(Ac)

R
= (A

R
)c and (Ac)

R = (AR)c . But, in general, they are not dual with respect to the quasi-complementation as stated 

above, i.e., (¬A)
R

�= ¬(A
R
) and (¬A)

R �= ¬(AR) (see Example 4.21).
As for any non empty set X , 〈P (X), ∪, ∩, ¬, ∅, X〉 is a model of qBa, so the quasi-complementation ¬ becomes an 

instance of ¬ available in qBa. Now, 〈P (X), ∪, ∩, ¬, ∅, X〉 is to be extended to a set theoretic rough set model containing 
dual operators O and M with respect to the quasi-complementation. For this, a pair of lower-upper approximations is 
defined so that they are dual with respect to the quasi-complementation. Due to this reason, we start with a generalised 
approximation space 〈X, R〉, where X is a non empty set and R is any relation on it and define g-lower and g-upper 
approximations so that they are dual with respect to the quasi-complementation ¬.

Let 〈X, R〉 be a generalised approximation space and g : X → X be an involution. A binary relation R g on X is defined 
as follows: for any two elements x and y in X , xR g y if and only if g(x)Rg(y). We now call 〈X, R g〉 a g-generalised 
approximation space corresponding to the generalised approximation space 〈X, R〉 and the involution g on X or simply, a 
g-approximation space.

As g is an involution on X , R can be redefined with respect to R g as follows: for any two elements x and y in X , xR y if 
and only if g(x)R g g(y). In general, there is no subset inclusion relation between R and R g . However, the following results 
show how they are connected depending upon g .
13
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Proposition 4.1. In a g-approximation space 〈X, R g〉, R g = R if and only if for all x, y ∈ X, xR y implies g(x)Rg(y).

Proof. Let R g = R . Then, for any x, y ∈ X, xR y implies xR g y and hence g(x)Rg(y) (by definition of R g ). Conversely, let for 
all x, y ∈ X, xR y imply g(x)Rg(y). Let xR y. Then, g(x)Rg(y) (by the hypothesis) and hence xR g y (by definition of R g ) and 
therefore R ⊆ R g . Let pR gq. Then, g(p)Rg(q) (by definition of R g ) which implies g(g(p))Rg(g(q)) (by the hypothesis), i.e., 
pRq. Therefore, R g ⊆ R . Thus, R g = R . �
Remark 4.2. The following statements are equivalent in a g-approximation space 〈X, R g〉.

1. R g = R .
2. For all x, y ∈ X, g(x)Rg(y) implies xR y.
3. For all x, y ∈ X, xR g y implies g(x)R g g(y).
4. For all x, y ∈ X, g(x)R g g(y) implies xR g y.
5. R ⊆ R g .
6. R g ⊆ R .

Let Rx = {y ∈ X : xR y} and R g
x = {y ∈ X : xR g y}. As before, there is no subset inclusion relation amongst Rx, R g(x), R

g
x

and R g
g(x) in general. But the following results show how they are related depending upon R and g .

Proposition 4.3. In a g-approximation space 〈X, R g〉, R g
x = R g

g(x) (Rx = R g(x)), for all x ∈ X if and only if for all x, y ∈ X, xR g y (xR y)

implies g(x)R g y (g(x)R y).

Proof. Let R g
x = R g

g(x) , for all x ∈ X . Then, for any x, y ∈ X, xR g y implies y ∈ R g
x = R g

g(x) and hence g(x)R g y. Conversely, 
let for all x, y ∈ X, xR g y imply g(x)R g y. Let y ∈ R g

x . Then, xR g y and hence g(x)R g y (by the hypothesis). This gives, 
y ∈ R g

g(x) and therefore R g
x ⊆ R g

g(x) . Let p ∈ R g
g(x) . Then, g(x)R g p which implies g(g(x))R g p (by the hypothesis), i.e., xR g p

and therefore p ∈ R g
x . Thus, R g

g(x) ⊆ R g
x and hence by earlier result R g

x ⊆ R g
g(x) we get R g

x = R g
g(x) , for all x ∈ X .

The other case can be done similarly. �
Remark 4.4. The following statements are equivalent in a g-approximation space 〈X, R g〉.

1. R g
x = R g

g(x) (Rx = R g(x)), for all x ∈ X .
2. g(x)R g y (g(x)R y) implies xR g y (xR y), for all x, y ∈ X .
3. R g

x ⊆ R g
g(x) (Rx ⊆ R g(x)), for all x ∈ X .

4. R g
g(x) ⊆ R g

x (R g(x) ⊆ Rx), for all x ∈ X .

5. Rx = R g(x) (R g
x = R g

g(x)), for all x ∈ X .

Proposition 4.5. In a g-approximation space 〈X, R g〉, Rx = g(R g
g(x)) and R g

x = g(R g(x)), for all x ∈ X.

Proof. If Rx = ∅ then R g
g(x) is so. Also,

t ∈ Rx ⇔ xRt

⇔ g(t) ∈ R g
g(x)

⇔ g(x)R g g(t)

⇔ g(g(t)) ∈ g(R g
g(x))

⇔ t ∈ g(R g
g(x))

Similarly, the other holds. �
Proposition 4.6. In a g-approximation space 〈X, R g〉 the following results hold.

1. R g is reflexive if and only if R is reflexive.
2. R g is symmetric if and only if R is symmetric.
3. R g is transitive if and only if R is transitive.
4. R g is serial if and only if R is serial.
14
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Proof. (1). Let R be reflexive and a ∈ X . Then, there exists b ∈ X such that g(b) = a and bRb. Then, g(b)R g g(b) that is aR ga. 
Let R g be reflexive and a ∈ X . Then, g(a)R g g(a) and hence aRa.
Similarly, the others hold. �

From the above proposition it follows that R g is an equivalence relation on X if and only if R is so.

Proposition 4.7. If R g (R) is reflexive and transitive and R g
x = R g

g(x) (Rx = R g(x)), for all x ∈ X then R g = R.

Proof. Let xR g y. Then, y ∈ R g
x = R g

g(x) and hence g(x)R g y. As R g is reflexive, g(y) ∈ R g
g(y) = R g

y and therefore yR g g(y). By 
transitivity of R g , g(x)R g g(y) and hence xR y and therefore R g ⊆ R . Using Remark 4.2, R g = R . �
Remark 4.8.

1. The reflexivity and transitivity of R g(R) in the above proposition are necessary. If we drop any one of them then R g

and R may not be equal. The Example 4.9 is considered for an evidence of that.
2. The Example 4.10 shows that the converse of the above result is not true even for an equivalence relation R g .

Example 4.9. Let X = {1, 2, 3, 4, 5, 6} and g : X → X be an involution defined by g(1) = 4, g(2) = 6, g(3) = 3, g(4) =
1, g(5) = 5, g(6) = 2. Let R = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (1, 4), (4, 1), (2, 6), (6, 2), (3, 5), (5, 2)} and H =
{(3, 3), (5, 5), (3, 1)}. Then, R g = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (1, 4), (4, 1), (2, 6), (6, 2), (3, 5), (5, 6)} is reflexive 
but not transitive and H g = {(3, 3), (5, 5), (3, 4)} is transitive but not reflexive. Here, R g

x = R g
g(x) and H g

x = H g
g(x) , for all 

x ∈ X but R g �= R and H g �= H .

Example 4.10. X and g are the same as stated in Example 4.9. Let R = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (1, 4), (4, 1)}. 
Then, R g = R and R g is an equivalence relation on X but R g

2 = {x ∈ X : 2R g x} = {2} �= R g
g(2) = {6}.

The quasi-complementation and set theoretic complementation of a set A, i.e., ¬A = g(A)c and Ac are not the same 
even when R is an equivalence relation, R = R g and Rx = R g(x) , for all x ∈ X . The following example establishes this.

Example 4.11. The same X and g as mentioned in Example 4.9 have been considered for this case also. Let R =
{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (1, 4), (4, 1), (2, 6), (6, 2)}. Then, R g = R , R g is an equivalence relation on X and 
Rx = R g(x) , for all x ∈ X . Let A = {1, 2, 4}. Then, ¬A = g(A)c = {2, 3, 5} �= Ac = {3, 5, 6}.

4.1. g-lower and g-upper approximations in a g-approximation space

Let 〈X, R g〉 be a g-approximation space and A be any subset of X . A g , the g-lower approximation of A and A
g

, the 
g-upper approximation of A, in the g-approximation space 〈X, R g〉, are defined by:

Ag = {x ∈ X : R g
x ⊆ A}

and

A
g = {x ∈ X : R g

g(x) ∩ g(A) �= ∅}.

Proposition 4.12. The g-lower approximation Ag and g-upper approximation A
g

are dual to each other with respect to the quasi-
complementation ¬ defined through g.

Proof.

¬ (¬Ag

) = ¬
(

g(A)c
g

)

= ¬{x ∈ X : R g
x ⊆ g(A)c}

= X − {g(x) : R g
x ⊆ g(A)c} [as ¬A = X − g(A)]

= X − {x ∈ X : R g
g(x) ⊆ g(A)c}

= {x ∈ X : R g
g(x) ∩ g(A) �= ∅}

= A
g
.

As ¬¬A = A, hence the result follows. �
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Proposition 4.13. Ag and Ag
are respectively AR g and AR

.

Proof. Clearly, Ag = AR g

A
g = {x ∈ X : R g

g(x) ∩ g(A) �= ∅}
= {x ∈ X : g(Rx) ∩ g(A) �= ∅} (by Proposition 4.5)

= {x ∈ X : g(Rx ∩ A) �= ∅}
= {x ∈ X : Rx ∩ A �= ∅}
= A

R �
Remark 4.14. It is noticeable from Example 4.21 that A g �= AR and A

g �= A
R g

, even when R is an equivalence relation on X . 

Hence, for a subset A of X , 〈Ag, A
g〉 is different from 〈AR , AR〉 and 〈AR g , A

R g 〉. In fact, Ag is Pawlakian lower approximation 
of A in 〈X, R g〉 and A

g
is Pawlakian upper approximation of A in 〈X, R〉.

Note 4.15. In Proposition 4.13 we see that A
g = A

R
. On the other hand, one may define Ag as Pawlakian lower approx-

imation of A in 〈X, R〉, i.e., Ag = AR . Then A
g

(considering dual with respect to the quasi-complementation ¬) must be 

Pawlakian upper approximation of A in 〈X, R g〉, i.e., A
g = A

R g

.

It has been mentioned earlier that Ag and A
g

are dual approximations with respect to the quasi-complementation. 

But AR and A
R

are not so. In fact, they are dual approximations with respect to set theoretic complementation. We have 
established here a necessary and sufficient condition by which it can be checked whether for a given involution g on X , AR

and A
R

are dual approximations with respect to quasi-complementation defined through g or not.

Theorem 4.16. Let 〈X, R〉 be a generalised approximation space and g be an involution on X. Then for any A ⊆ X, AR and A
R

are 
dual approximations with respect to the quasi-complementation defined through g if and only if R = R g .

Proof. Let R = R g . Then, Ag = AR g = AR and A
g = A

R
and therefore AR and A

R
are dual approximations with respect to 

the quasi-complementation. Conversely, let A R and A
R

be dual approximations with respect to the quasi-complementation. 
Then, AR = ¬(¬A

R
). As, A

R = A
g

, for all A ⊆ X . So, AR = ¬(¬A
g
) = Ag = AR g i.e., {x ∈ X : Rx ⊆ A} = {y ∈ X : R g

y ⊆ A}, for 
all A ⊆ X . Let uR v . Then, v ∈ Ru . Let A = R g

u . Then {x ∈ X : Rx ⊆ R g
u} = {y ∈ X : R g

y ⊆ R g
u} gives, u ∈ {x ∈ X : Rx ⊆ R g

u}. Then, 
Ru ⊆ R g

u . As v ∈ Ru , so v ∈ R g
u and hence uR g v . Thus, R ⊆ R g . Using Remark 4.2, R = R g . �

Remark 4.17. It is to be noted from Example 4.11 that the quasi- complementation and complementation of a set A i.e., ¬A
and Ac are not the same even when R = R g . If they were the same, the above theorem would not have any significance at 
all.

However, when R �= R g , 〈Ag, A
g〉 �= 〈AR , AR〉 or 〈AR g , A

R g 〉, still the following results hold.

Proposition 4.18. In a g-approximation space 〈X, R g〉, the following results hold.

1. X g = X and ∅g = ∅.

2. If A ⊆ B ⊆ X then Ag ⊆ B g and Ag ⊆ B
g

.

3. A ∩ B g = Ag ∩ B g and A ∪ B
g = A

g ∪ B
g

, for all A, B ⊆ X.

Proposition 4.19. If R g is reflexive in a g-approximation space 〈X, R g〉, the following results hold.

1. X
g = X and ∅g = ∅.

2. Ag ⊆ A ⊆ A
g

, for all A ⊆ X.

Proposition 4.20. If R g is transitive in a g-approximation space 〈X, R g〉 then for any subset A of X, Ag ⊆ (Ag)
g

and (A
g
)

g
⊆ A

g

hold.
16
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The following example is considered to show that (A g)
g ⊆ Ag may not hold even for an equivalence relation R g in a 

g-approximation space 〈X, R g〉.

Example 4.21. X and g are the same as mentioned in Example 4.9. Let R be an equivalence relation on X which partitions 
the set X into the subsets {2, 3}, {4}, {1, 5}, {6} of X . Then, the equivalence relation R g partitions the set X into the subsets 
{3, 6}, {1}, {4, 5}, {2} of X . Let A = {1, 3, 6}. Then, Ag = {1, 3, 6} and (Ag)

g = {1, 2, 3, 5, 6} and therefore (Ag)
g

� Ag . Further, 

we see that A g = {1, 3, 6} �= AR = {6} and A
g = {1, 2, 3, 5, 6} �= A

R g = {1, 3, 6}. It is also noticeable that A R and A
R

are not 

dual approximations with respect to the quasi-complementation as (¬A)
R

= {1, 5, 6} �= ¬(A
R
) = {1} and (¬A)

R = {1, 5, 6} �=
¬(AR) = {1, 3, 4, 5, 6}.

Theorem 4.22. Let R g be an equivalence relation in a g-approximation space 〈X, R g〉. Then for any subset A of X, (Ag)
g ⊆ Ag holds 

if and only if R g = R.

Proof. Let R g = R . Then, 〈Ag, A
g〉 = 〈AR , AR〉 and consequently for any subset A of X , (Ag)

g ⊆ Ag holds. Conversely, let 
(Ag)

g ⊆ Ag hold, for any subset A of X . Due to reflexivity of R g , (Ag)
g = Ag , for any subset A of X . Let xR y. Then, 

[x]R = [y]R (as R is an equivalence relation), [x]R representing the equivalence class of x with respect to the relation R . Let 
A = [x]R g . Then, Ag = [x]R g and hence

[x]R g
g = [x]R g (as (Ag)

g = Ag, for all A ⊆ X),

i.e., {z ∈ X : [z]R ∩ [x]R g �= ∅} = [x]R g . (4.1)

Since x ∈ [x]R and x ∈ [x]R g , so [x]R ∩ [x]R g �= ∅. As [x]R = [y]R , so [y]R ∩ [x]R g �= ∅. It follows from (4.1) that y ∈ [x]R g
g =

[x]R g . This gives, xR g y. Thus, R ⊆ R g . Using Remark 4.2, R g = R . �
By the above theorem it is clear that the counterpart of modal axiom S5 is possible with respect to g-lower and g-upper 

approximations only when R g = R . Indeed, in that case, g-lower and g-upper approximations are the same with Pawlakian 
lower and upper approximations in the approximation space 〈X, R〉. But one gain, in this case, is that Ag and A

g
i.e., AR

and A
R

are dual approximations with respect to the quasi-complementation. From Example 4.11, it is to be noted that 
complementation and quasi-complementation are not the same even when R is an equivalence relation.

4.2. Rough set models for IqBaO, IqBaT, IqBa4 and IqBa5

Rough Set model for IqBaO Let 〈X, R g〉 be a g-approximation space. Now, 〈P (X), ∪, ∩, ¬, ∅, X〉 is a qBa, where ¬A =
g(A)c , for all A ∈ P (X). We introduce → in P (X) as follows
A → B = Ac ∪ B , for all A, B ∈ P (X).
Then, it is obvious that A → B = X if and only if A ⊆ B and consequently 〈P (X), ∪, ∩, →, ¬, ∅, X〉 becomes a IqBa. We now 
define O A, for all A ⊆ X as O A = Ag . Then by Proposition 4.12 and Proposition 4.18, 〈P (X), ∪, ∩, →, ¬, O , ∅, X〉 is a IqBaO.

Rough Set model for IqBaT For any reflexive relation R g on X , by Proposition 4.12, Proposition 4.18 and Proposi-
tion 4.19, 〈P (X), ∪, ∩, →, ¬, O , ∅, X〉 is a IqBaT.

Rough Set model for IqBa4 For any reflexive and transitive relation R g on X , by Proposition 4.12, Proposition 4.18, 
Proposition 4.19 and Proposition 4.20, 〈P (X), ∪, ∩, →, ¬, O , ∅, X〉 is a IqBa4.

Remark 4.23. If → is dropped from the above model of IqBa4 then 〈P (X), ∪, ∩, ¬, O , ∅, X〉 becomes a model of tqBa.

Rough Set model for IqBa5 For any equivalence relation R g on X with R g = R , by Proposition 4.12, Propositions 4.18, 
Proposition 4.19, Proposition 4.20 and Theorem 4.22, 〈P (X), ∪, ∩, →, ¬, O , M, ∅, X〉 is a IqBa5 where O A = Ag = AR and 

M A = A
g = A

R
.

Remark 4.24.

1. 〈P (X), ∪, ∩, ¬, O , M, ∅, X〉 becomes a model for a tqBa5 if → is dropped from the above model of IqBa5.

2. Defining Ag = AR , A
g = A

R g

and imposing the condition reflexivity/reflexivity and transitivity/equivalence on R it can 
be shown that 〈P (X), ∪, ∩, →, ¬, O 1, ∅, X〉 is a model for IqBaO/IqBaT/IqBa4/IqBa5 where O 1 A = AR . Then, the two 
models with respect to the O and O 1 as stated above are different upto the algebra IqBa4 but the same for the algebra 
IqBa5.

3. If we define implication as A →1 B = ¬A ∪ g(B) = g(A → B), for all A, B ∈ P (X) then 〈P (X), ∪, ∩, →1, ¬, O/O 1, ∅, X〉
becomes a different model for IqBaO/IqBaT/IqBa4/IqBa5 with respect to the implication →1 .
17
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4.3. Rough set models for IqBa1, IqB1,T, IqB1,4 and IqB1,5

The following example is considered to show that ¬(A g) ∪ Ag may not be the whole set X even when R g is an equiva-
lence relation on X and R g = R .

Example 4.25. X , g and R are the same as stated in Example 4.10. Let A = {1, 2, 3}. Then, ¬(Ag) ∪ Ag = {1, 2, 3, 4, 5} �= X .

It is observed from the above Example 4.25 that Ag and A
g

do not fit with IP1. So, we are now going to define a pair of 
new lower and upper approximations so that Rough set models for IqBa1, IqB1,T, IqB1,4 and IqB1,5 can be constructed.

Let 〈X, R g〉 be a g-approximation space and A be any subset of X . A g,1, the g, 1-lower approximation of A and A
g,1

, 
the g, 1-upper approximation of A, in the g-approximation space 〈X, R g〉, are defined by:

Ag,1 = {x ∈ X : R g
x ⊆ A} ∩ {x ∈ X : R g

g(x) ⊆ A}
and

A
g,1 = {x ∈ X : R g

g(x) ∩ g(A) �= ∅} ∪ {x ∈ X : R g
x ∩ g(A) �= ∅}.

Proposition 4.26. The g, 1-lower approximation Ag,1 and g, 1-upper approximation Ag,1
are dual to each other with respect to the 

quasi-complementation ¬.

Proof.

¬ (¬Ag,1

) = ¬
(

g(A)c
g,1

)

= ¬ ({x ∈ X : R g
x ⊆ g(A)c} ∩ {g(x) ∈ X : R g

x ⊆ g(A)c})

= X − g
({x ∈ X : R g

x ⊆ g(A)c} ∩ {g(x) ∈ X : R g
x ⊆ g(A)c})

= X − ({g(x) ∈ X : R g
x ⊆ g(A)c} ∩ {x ∈ X : R g

x ⊆ g(A)c})

= (
X − {g(x) ∈ X : R g

x ⊆ g(A)c}) ∪ (
X − {x ∈ X : R g

x ⊆ g(A)c})

=
(

X − {x ∈ X : R g
g(x) ⊆ g(A)c}

)
∪ (

X − {x ∈ X : R g
x ⊆ g(A)c})

= {x ∈ X : R g
g(x) ∩ g(A) �= ∅} ∪ {x ∈ X : R g

x ∩ g(A) �= ∅}
= A

g,1
.

As ¬¬A = A, result follows. �
Proposition 4.27. Ag,1 and Ag,1

defined above are respectively AR g ∩ g(AR g ), i.e., Ag ∩ g
(

Ag

)
and AR ∪ g

(
A

R
)

, i.e., Ag ∪ g
(

A
g
)

.

Proof. Ag,1 = {x ∈ X : R g
x ⊆ A} ∩ {x ∈ X : R g

g(x) ⊆ A} = {x ∈ X : R g
x ⊆ A} ∩ {g(x) ∈ X : R g

x ⊆ A} = AR g ∩ g
(

AR g

) = Ag ∩ g
(

Ag

)
.

A
g,1 = {x ∈ X : R g

g(x) ∩ g(A) �= ∅} ∪ {x ∈ X : R g
x ∩ g(A) �= ∅}

= {x ∈ X : g(Rx ∩ A) �= ∅} ∪ {x ∈ X : g(R g(x) ∩ A) �= ∅} (by Proposition 4.5)

= {x ∈ X : Rx ∩ A �= ∅} ∪ {x ∈ X : R g(x) ∩ A �= ∅}
= A

R ∪ {g(x) ∈ X : Rx ∩ A �= ∅}
= A

R ∪ g
(

A
R
)

= A
g ∪ g

(
A

g
)

. �

Remark 4.28. For an arbitrary relation R g , it follows from Proposition 4.27 and Proposition 4.13 that A g,1 ⊆ Ag and A
R =

A
g ⊆ A

g,1
, for all A ⊆ X .

Proposition 4.29. If R g
x = R g , for all x ∈ X in a g-approximation space 〈X, R g〉 then Ag,1 = Ag and Ag,1 = A

g
, for all A ⊆ X.
g(x)

18
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Table 2
Three lower-upper approximations of a particular set.

Case (i) Case (ii) Case (iii) Case (iv)

A {2, 4} {1, 2, 5} {1, 3, 5} {1, 3, 6}
〈AR , A

R 〉 {4}, {2, 3, 4} {1, 5}, {1, 2, 3, 5} {1, 5}, {1, 2, 3, 5} {6}, {1, 2, 3, 5, 6}
〈Ag , A

g 〉 {2}, {2, 3, 4} {1, 2}, {1, 2, 3, 5} {1}, {1, 2, 3, 5} {1, 3, 6}, {1, 2, 3, 5, 6}
〈Ag,1, A

g,1〉 ∅, {1, 2, 3, 4, 6} ∅, X ∅, X {3}, X
Remark AR and Ag have no common 

intersection
AR and Ag have a non-void 
intersection

Ag is a proper subset of AR AR is a proper subset of Ag

In the following example we have shown how the three pairs 〈A R , AR〉, 〈Ag, A
g〉 and 〈A g,1, A

g,1〉 of a particular set look 
like when R is an equivalence relation, R �= R g and Rx �= R g(x) , for at least one x ∈ X .

Example 4.30. X , g and R are the same as stated in Example 4.21. The possible cases are presented in Table 2.

It has been mentioned earlier that for any relation R , A g,1 ⊆ Ag and A
R = A

g ⊆ A
g,1

hold. As there is no fixed subset 
inclusion relation between AR and Ag until R = R g , the four cases that we have shown in Table 2 are the only possible 
cases when AR �= Ag . A Pictorial representation of these four cases are shown in more general way in Fig. 7.

Proposition 4.31. In a g-approximation space 〈X, R g〉, the following results hold.

1. X g,1 = X and ∅g,1 = ∅.

2. If A ⊆ B ⊆ X then Ag,1 ⊆ B g,1 and Ag,1 ⊆ B
g,1

.

3. A ∩ B g,1 = Ag,1 ∩ B g,1 and A ∪ B
g,1 = A

g,1 ∪ B
g,1

, for all A, B ⊆ X.

4. ¬ 
(

Ag,1

) ∪ Ag,1 = X, for all A ⊆ X.

Proof. Proofs of first three are straightforward. For last one, if for any x ∈ X , x ∈ ¬ 
(

Ag,1

)
, it is done. So, when x /∈ ¬ 

(
Ag,1

)
then x ∈ g(A g,1) = g

(
AR g ∩ g

(
AR g

)) = g(AR g ) ∩ AR g = Ag,1 �
Proposition 4.32. If R g is reflexive in a g-approximation space 〈X, R g〉, the following results hold.

1. X
g,1 = X and ∅g,1 = ∅.

2. Ag,1 ⊆ A ⊆ A
g,1

, for all A ⊆ X.

If R g is transitive, even an equivalence relation, then Ag,1 ⊆ (Ag,1)
g,1

may not hold. The example given below is one 

such.

Example 4.33. X and g are the same as stated in Example 4.9. Let R = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (1, 2), (2, 1)}.
Then, R g = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (4, 6), (6, 4)} is an equivalence relation on X . Let A = {1, 4, 6}. Then, 
Ag,1 = {1, 4} but (A g,1)

g,1
= ∅.

Proposition 4.34. If R g is transitive and R g
x = R g

g(x) , for all x ∈ X in a g-approximation space 〈X, R g〉 then for any subset A of X, 

Ag,1 ⊆ (Ag,1)
g,1

and (A
g,1

)
g,1

⊆ A
g,1

hold.

Proof. From Proposition 4.29, Ag,1 = Ag and A
g,1 = A

g
. As R g is transitive, result follows from Proposition 4.20. �

Remark 4.35. The condition as stated in the above proposition is a sufficient condition but not necessary. The following 
example establishes that for any subset A of X , Ag,1 ⊆ (Ag,1)

g,1
holds where R g is transitive, even an equivalence relation, 

but R g
x �= R g

g(x) , for all x ∈ X .

Example 4.36. Let X = {a, b} and g : X → X be an involution defined by g(a) = b, g(b) = a. Let R = {(a, a), (b, b)}. Then R g =
{(b, b), (a, a)} is an equivalence relation on X . Here, A g,1 = (A g,1) , for all subset A of X but R g

a �= R g
g(a) and R g

b �= R g
g(b)

.

g,1
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Table 3
Some important results on the three lower-upper approximations.

Nature of R Result

R is arbitrary relation Ag , Ag
and Ag,1, Ag,1

are always dual approximations with respect to the 
quasi-complementation.

R is arbitrary, R �= R g and Rx �= R g(x) , for at least one x ∈ X (1) Ag,1 ⊆ Ag .

(2) A
R = A

g ⊆ A
g,1

.

(3) AR and A
R

are not dual approximations with respect to the 
quasi-complementation.

R is reflexive/equivalence, R �= R g and Rx �= R g(x) , for at least 
one x ∈ X

(1) Ag,1 ⊆ Ag ⊆ A ⊆ A
g = A

R ⊆ A
g,1

.

(2) AR and A
R

are not dual approximations with respect to the 
quasi-complementation.
(3)AR ⊆ A but there is no fixed subset inclusion relation between AR and 
Ag . See Table 2 and Fig. 7.

R is reflexive and transitive, Rx = R g(x) , for all x ∈ X and R �= R g The case is not possible by Proposition 4.7.

R is arbitrary but not reflexive and transitive, Rx = R g(x) , for all 
x ∈ X and R �= R g

(1) Ag,1 = Ag .

(2) A
R = A

g = A
g,1

.

(3) AR and A
R

are not dual approximations with respect to the 
quasi-complementation.

R is arbitrary, R = R g and Rx �= R g(x) , for at least one x ∈ X (1) Ag,1 ⊆ Ag = AR

(2)A
R = A

g ⊆ A
g,1

.

(3) AR and A
R

are dual approximations with respect to the 
quasi-complementation.

R is reflexive/equivalence, R = R g and Rx �= R g(x) , for at least 
one x ∈ X

(1) Ag,1 ⊆ Ag = AR ⊆ A ⊆ A
R = A

g ⊆ A
g,1

.

(2) AR and A
R

are dual approximations with respect to the 
quasi-complementation.

R is arbitrary, R = R g and Rx = R g(x) , for all x ∈ X (1) Ag,1 = Ag = AR

(2)A
R = A

g = A
g,1

.

(3) AR and A
R

are dual approximations with respect to the 
quasi-complementation.

Proposition 4.37. If R g is an equivalence relation and R g
x = R g

g(x) , for all x ∈ X in a g-approximation space 〈X, R g〉 then for any 

subset A of X, (Ag,1)
g,1 ⊆ Ag,1 .

The condition as stated in the above proposition is only sufficient. The example given below shows that for any subset 
A of X , (A g,1)

g,1 ⊆ Ag,1 holds for an equivalence relation R g where R g
x �= R g

g(x) , for all x ∈ X .

Example 4.38. X , g and R are the same as stated in Example 4.36. Here, (Ag,1)
g,1 = Ag,1, for all subset A of X but R g

a �=
R g

g(a) and R g
b �= R g

g(b)
.

Rough Set model for IqBa1 Let 〈X, R g〉 be a g-approximation space. By Proposition 4.26 and Proposition 4.31, 
〈P (X), ∪, ∩, →, ¬, O , ∅, X〉 is a IqBa1 where ¬A = g(A)c , A → B = Ac ∪ B and O A = Ag,1.

Rough Set model for IqBa1,T For any reflexive relation R g on X , by Proposition 4.26, Proposition 4.31 and Proposi-
tion 4.32, 〈P (X), ∪, ∩, →, ¬, O , ∅, X〉 is a IqBa1,T.

Rough Set model for IqBa1,4 For any reflexive and transitive relation R g with R g
x = R g

g(x) , for all x ∈ X , by Propo-
sition 4.26, Proposition 4.31, Proposition 4.32 and Proposition 4.34, 〈P (X), ∪, ∩, →, ¬, O , ∅, X〉 is a IqBa1,4 where O A =
Ag,1 = Ag = AR by Proposition 4.7.

Rough Set model for IqBa1,5 For any equivalence relation R g on X with R g
x = R g

g(x) , for all x ∈ X , by Proposition 4.26, 
Proposition 4.31, Proposition 4.32, Proposition 4.34 and Proposition 4.37, 〈P (X), ∪, ∩, →, ¬, O , ∅, X〉 is a IqBa1,5 where 
O A = Ag,1 = AR and M A = A

g,1 = A
R

.

Remark 4.39.

1. 〈P (X), ∪, ∩, ¬, O , M, ∅, X〉 becomes a model of IP1 if → is dropped from the above model of IqBa1,5.
2. If implication is defined as A →1 B = g(A → B), for all A, B ∈ P (X) then 〈P (X), ∪, ∩, →1, ¬, I, ∅, X〉 becomes a differ-

ent model of IqBaO/IqBaT/IqBa4/IqBa5 with respect to the implication →1.
20



M.R. Sardar and M.K. Chakraborty International Journal of Approximate Reasoning 148 (2022) 1–22
A
g,1

A
R = A

g

A

AR
Ag

Ag,1

X

Case (i)

A
g,1

A
R = A

g

A

AR Ag

Ag,1

X

Case (ii)

A
g,1

A
R = A

g

A
AR

Ag

Ag,1

X

Case (iii)

A
g,1

A
R = A

g

A
Ag

AR

Ag,1

X

Case (iv)

Fig. 7. Different possibilities of three lower-upper approximations when R is reflexive/equivalence, R �= R g and Rx �= R g(x) , for at least one x ∈ X .

In order to view the important results of this section at a glance we refer to Table 3.

5. Concluding remarks

We may summarise the content and indicate some future directions of work of this paper as follows.

• First, we have developed three independent algebras by adding the three intermediate properties separately to an 
implicative quasi-Boolean algebra with operator. Further, a cluster of algebras, independent to each other, are obtained 
by adding modal axioms to them. A number of examples are considered to show their independence. Corresponding 
logic systems are developed and soundness-completeness theorems are established.

• In [10], Saha et al. introduced the notion of an implicative quasi-Boolean algebra following Rasiowa as no arrow can 
be defined in terms of other operations present in a qBa satisfying the property (P→). Afterwards, they added modal 
axioms and obtained more structures. In our case, we have followed the same basic principle and obtained twelve 
additional structures besides the structures that were developed in [10]. Thus, this work may be considered as supple-
mentary to [10].
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• Defining a new relation based on a generalised approximation space 〈X, R〉 and an involution g on X we have intro-
duced two pairs of lower - upper approximations which are dual with respect to the quasi-complementation. Using 
them rough set models for algebras IqBaO, IqBaT, IqBa4, IqBa5, IqBa1, IqBa1,T, IqBa1,4, IqBa1,5, tqBa, tqBa5 and IA1 have 
been constructed. A necessary and sufficient condition is obtained when Pawlakian lower and upper approximations 
satisfy the notion of duality with respect to quasi-complementation.

• The natural question from the algebraic view point is about the representation theorem: Would the rough set models 
play the role of such representation for corresponding algebras? This point is for future investigation.

• Rough set model for the remaining algebras are still open for future work. A parallel study may be considered for 
covering case.

• We also pose the following question.
Given a general approximation space 〈X, R〉, is it possible to construct an involution g depending on R such that A R

and A
R

are dual approximations with respect to the quasi-complementation generated by g? Our guess is that it would 
be possible.
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